Low LO Leakage Base-Station Rx/Tx Mixer

Abstract

General Description The MAX2043 high-linearity passive upconverter or downconverter mixer is designed to provide approximately +31 dBm of IIP3, +67 dBc of LO $\pm 2 \mathrm{IF}$ spurious rejection, 7.8 dB of noise figure, 7.5 dB of conversion loss, and -52 dBm of LO leakage for UMTS/WCDMA, DCS, PCS, and WiMAX base-station applications. With a 1700 MHz to 3000 MHz RF frequency range and a 1900 MHz to 3000 MHz LO frequency range, this mixer is ideal for high-side LO injection architectures. In addition to offering excellent linearity and noise performance, the MAX2043 also yields a high level of component integration. The MAX2043 integrates baluns in the RF and LO ports, a dual-input LO-selectable switch, an LO buffer, and a double-balanced mixer. The onchip baluns allow for a single-ended RF input for downconversion (or RF output for upconversion), and single-ended LO inputs. The MAX2043 requires a typical OdBm LO drive, and supply current is rated at a typical 108mA level. The IF port is DC-coupled, making it ideal for direct conversion or modulation. As an upconverter, the device has low output noise floor of less than $-160 \mathrm{dBc} / \mathrm{Hz}(-160 \mathrm{dBm} / \mathrm{Hz}$ when transmitting OdBm linear RF power). The MAX2043 is available in a 36-pin thin QFN package ($6 \mathrm{~mm} \times 6 \mathrm{~mm}$) with an exposed paddle. Electrical performance is guaranteed over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

> UMTS/WCDMA and 3G Base Stations
> DCS 1800 and EDGE Base Stations
> PCS 1900 and EDGE Base Stations
> cdmaOne ${ }^{\text {TM }}$ and cdma2000® Base Stations
> WiMAX Base Stations and Customer Premise
> Equipment
> Point-to-Point Microwave Systems
> Wireless Local Loop
> Private Mobile Radio
> Digital and Spread-Spectrum Communication Systems
> Microwave Links
cdmaOne is a trademark of CDMA Development Group.
cdma2000 is a registered trademark of Telecommunications Industry Association.

Features

- +31dBm Typical 3rd-Order Input Intercept Point
- +23dBm Typical Input 1dB Compression Point
- 1700MHz to 3000 MHz RF Frequency Range
- 1900 MHz to 3000 MHz LO Frequency Range
- DC to 350MHz IF Frequency Range
- 7.5dB Typical Conversion Loss
-7.8dB Typical Noise Figure
- -160dBc/Hz LO Noise
- -52 dBm LO Leakage at RF Port
- 67dBc LO ± 2 IF Spurious Suppression
- -3dBm to +6dBm LO Drive
- +5V Single-Supply Operation
- Built-In SPDT LO Switch with 43dB LO1 to LO2 Isolation and 50ns Switching Time
- Internal RF and LO Baluns for Single-Ended Inputs
- External Current-Setting Resistor Provides Option for Operating Mixer in Reduced Power/Reduced Performance Mode
- Lead-Free Package Available

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX2043ETX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$36 \mathrm{TQFN}-\mathrm{EP}^{*}$ $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$	T3666-2
MAX2043ETX-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$36 \mathrm{TQFN}-\mathrm{EP}^{*}$ $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$	T3666-2
MAX2043ETX +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$36 \mathrm{TQFN}-\mathrm{EP}^{*}$ $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$	T3666-2
MAX2043ETX+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$36 \mathrm{TQFN}-E P^{*}$ $(6 \mathrm{~mm} \times 6 \mathrm{~mm})$	T3666-2

*EP = Exposed paddle.
+Denotes lead-free package.
-T = Tape-and-reel package.

Pin Configuration and Typical Application Circuit appear at end of data sheet.

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

ABSOLUTE MAXIMUM RATINGS

$V_{C c}$ to GND	o +5.5V
RF (RF is DC shorted to G	un)...................50mA
LO1, LO2 to GND	$\pm 0.3 \mathrm{~V}$
RFTAP, IF+, IF- to GND	.-0.3V to (Vcc + 0.3V)
LOSEL to GND	.-0.3V to (Vcc + 0.3V)
RF, IF, and LO Input Power**	+20dBm
LO_ADJ Current	.. 5 mA

Continuous Power Dissipation (T_{A} 36-Pin TQFN (derated $30.3 \mathrm{~mW} /{ }^{\circ}$	º 2200 mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
ӨJc.	$+7.4^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA }}$	$+38^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range	-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s	$+300^{\circ} \mathrm{C}$

${ }^{* *}$ Maximum reliable continuous input power applied to the RF, IF, and LO ports of this device is +15 dBm from a 50Ω source.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(MAX2043 Typical Application Circuit, VCC $=+4.75 \mathrm{~V}$ to +5.25 V , no RF signals applied, IF+ and IF- DC grounded through a transformer, $\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. A 360Ω resistor is connected from LO_ADJ to GND. Typical values are at $\mathrm{V} C \mathrm{C}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC		4.75	5	5.25	V
Supply Current	Icc	Total supply current		108	140	mA
LOSEL Logic 0 Input Voltage	V_{IL}				0.8	V
LOSEL Logic 1 Input Voltage	V_{IH}		2			V
LOSEL Logic Input Current	I_{IH} and $\mathrm{IIL}^{\text {L }}$		-10		+10	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS (Downconverter Operation)

(MAX2043 Typical Application Circuit, VCC $=+4.75 \mathrm{~V}$ to +5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=1700 \mathrm{MHz}$ to $3000 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1900 \mathrm{MHz}$ to $3000 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}<\mathrm{f}_{\mathrm{LO}}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=1900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=2100 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$, $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RF Frequency	$\mathrm{fRF}^{\text {f }}$		1700		3000	MHz
LO Frequency	fLO		1900		3000	MHz
IF Frequency (Notes 1, 2)	f_{I}		0		350	MHz
Small-Signal Conversion Loss	LC	DCS 1800: $\mathrm{PRF}_{\text {RF }}=-10 \mathrm{dBm}$, PLO $=0 \mathrm{dBm}$, $\mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=1710 \mathrm{MHz}$ to 1785 MHz		7.5		dB
		PCS 1900: PRF =-10dBm, PLo = 0dBm, $\mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=1850 \mathrm{MHz}$ to 1910 MHz		7.5		
		UMTS 2100: PRF $=-10 \mathrm{dBm}$, PLO $=0 \mathrm{dBm}$, $\mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=1920 \mathrm{MHz}$ to 1980 MHz		7.5		
Conversion Loss Variation from Nominal		```DCS 1800: fRF = 1710MHz to 1785MHz```		± 0.5		dB
		$\begin{aligned} & \text { PCS 1900: } \\ & \text { fRF }=1850 \mathrm{MHz} \text { to } 1910 \mathrm{MHz} \end{aligned}$		± 0.5		
		UMTS 2100: $\mathrm{f}_{\mathrm{RF}}=1920 \mathrm{MHz}$ to 1980 MHz		± 0.5		

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

AC ELECTRICAL CHARACTERISTICS (Downconverter Operation) (continued)

(MAX2043 Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=1700 \mathrm{MHz}$ to $3000 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=1900 \mathrm{MHz}$ to $3000 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}<\mathrm{fLO}^{2}, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{PLO}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{fF}}=1900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=2100 \mathrm{MHz}, \mathrm{f}_{\mathrm{f}}=200 \mathrm{MHz}$, $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Conversion Loss Variation Over Temperature		T $\mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.0075		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Noise Figure, Single Sideband	NF	$\begin{aligned} & \text { TC }=+25^{\circ} \mathrm{C}, \text { DCS } 1800: \\ & \mathrm{f}_{\mathrm{RF}}=1710 \mathrm{MHz} \text { to } 1785 \mathrm{MHz} \end{aligned}$		7.8		dB
		$\begin{aligned} & \mathrm{TC}=+25^{\circ} \mathrm{C}, \mathrm{PCS} 1900: \\ & \mathrm{f}_{\mathrm{RF}}=1850 \mathrm{MHz} \text { to } 1910 \mathrm{MHz} \end{aligned}$		7.8		
		$\begin{aligned} & \text { TC }=+25^{\circ} \mathrm{C}, \text { UMTS 2100: } \\ & \text { fRF }=1920 \mathrm{MHz} \text { to } 1980 \mathrm{MHz} \end{aligned}$		7.8		
Noise Figure Under Blocking Condition (Note 3)		PBLOCKER $=+5 \mathrm{dBm}$ at $2100 \mathrm{MHz}, \mathrm{f}_{\text {RF }}=$ $2000 \mathrm{MHz}, \mathrm{fLO}=2190 \mathrm{MHz}$, PLO $=0 \mathrm{dBm}$		19		dB
Input Compression Point (Note 4)	IP1dB	High-side injection		+23		dBm
3rd-Order Input Intercept Point	IIP3	High-side injection, fRF1 $=1900 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{RF}} 2=1901 \mathrm{MHz}$, OdBm per tone at RF port		31		dBm
3rd-Order Input Intercept Point Variation		T $\mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		± 0.75		dB
2LO-2RF Spur		$\begin{aligned} & \hline \text { fRF }=1900 \mathrm{MHz}, \\ & \text { fLO }=2100 \mathrm{MHz}, \\ & \text { fSPUR }=2000 \mathrm{MHz}, \\ & \text { PRF }=0 \mathrm{dBm}, \\ & \text { PLO }=0 \mathrm{dBm} \end{aligned}$		63		dBc
3LO-3RF Spur		$\begin{aligned} & \hline \text { fRF }=1900 \mathrm{MHz}, \\ & \text { fLO }=2100 \mathrm{MHz}, \\ & \text { fSPUR }=2033.333 \mathrm{MHz}, \\ & \text { PRF }^{2}=0 \mathrm{dBm}, \\ & \text { PLO }=0 \mathrm{dBm} \\ & \hline \end{aligned}$		67		dBc
LO Drive (Note 5)	PLO		-3	0	+6	dBm
LO1-to-LO2 Port Isolation		$\begin{aligned} & \text { PLO1 = PLO2 = +3dBm, } \\ & \mathrm{fIF}_{\mathrm{IF}}=200 \mathrm{MHz} \text { (Note 6) } \end{aligned}$		43		dB
LO Leakage at RF Port		PLO $=+3 \mathrm{dBm}, \mathrm{fLO}=2260 \mathrm{MHz}$		-52	-38	dBm
LO Switching Time		50% of LOSEL to IF settled within 2 degrees		50		ns
LO Leakage at IF Port		$\mathrm{PLO}=+3 \mathrm{dBm}$		-35		dBm
RF-to-IF Isolation		PLO $=+3 \mathrm{dBm}$		38		dB
RF Input Return Loss		LO on and IF terminated		17		dB
LO Input Return Loss		RF and IF terminated		14		dB
IF Return Loss		RF and LO terminated in 50Ω, $\mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$ (Note 7)		20		dB

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

AC ELECTRICAL CHARACTERISTICS (Upconverter Operation)

(MAX2043 Typical Application Circuit, $\mathrm{VCC}=+4.75 \mathrm{~V}$ to +5.25 V , $\mathrm{PLO}=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{PIF}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=1700 \mathrm{MHz}$ to 3000 MHz , $\mathrm{f}_{\mathrm{LO}}=1900 \mathrm{MHz}$ to $3000 \mathrm{MHz}, \mathrm{f}_{\mathrm{fI}}=200 \mathrm{MHz}$, $\mathrm{f}_{\mathrm{RF}}=\mathrm{f}_{\mathrm{LO}}-\mathrm{f}_{\mathrm{f}}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=$ $+5 \mathrm{~V}, \mathrm{P}_{\mathrm{IF}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=2170 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=2260 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=90 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Compression Point	IP1dB			23		dBm
3rd-Order Input Intercept Point	IIP3	Two tones: $\begin{aligned} & \mathrm{f}_{\mathrm{IF} 1}=90 \mathrm{MHz}, \\ & \mathrm{fIF2}=91 \mathrm{MHz}, \\ & \mathrm{P}_{\mathrm{IF}}=+5 \mathrm{dBm} / \text { tone }, \\ & \mathrm{f}_{\mathrm{LO}}=2230 \mathrm{MHz}, \\ & \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm} \end{aligned}$		28		dBm
$\mathrm{LO} \pm 2 \mathrm{IF}$ Spur		LO-2IF	60	67		dBc
		LO + 2IF	60	69		
LO $\pm 3 \mathrm{IF}$ Spur		LO-3IF		63		dBc
		LO + 3IF		64		
Output Noise Floor		Pout $=0 \mathrm{dBm}$		-160		$\mathrm{dBm} / \mathrm{Hz}$

Note 1: All limits reflect losses of external components. Output measurement taken at IF port of Typical Application Circuit.
Note 2: The lower IF frequency limit of OMHz is limited by the external IF transformer.
Note 3: Measured with external LO source noise filtered so its noise floor is not a contributor. Measured with: $f_{R F}=2000 \mathrm{MHz}$, $f_{B L O C K E R}=2100 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=2190 \mathrm{MHz}$, using a 190 MHz SAW filter on the IF port. This specification reflects the effects of all SNR degradations in the mixer, including the LO noise as defined in Maxim Application Note 2021.
Note 4: Maximum reliable continuous input power applied to the RF or IF port of this device is +15 dBm from a 50Ω source.
Note 5: Typical Operating Characteristics show LO drive extended to +6 dBm
Note 6: Measured IF port at IF frequency. flO1 and floz are offset by 1 MHz .
Note 7: IF return loss can be optimized by external matching components.

Typical Operating Characteristics

(MAX2043 Typical Application Circuit, C2 not installed, RFTAP = GND, VCC $=+5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{LOSEL}=$ " 0 " (LO2 selected), PRF = $0 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$, unless otherwise noted.)

Downconverter Curves

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

Typical Operating Characteristics (continued)

(MAX2043 Typical Application Circuit, C2 not installed, RFTAP $=$ GND, $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{LOSEL}=$ " 0 " (LO2 selected), PRF $=$ $0 \mathrm{dBm}, \mathrm{fLO}_{\mathrm{L}}>\mathrm{fRF}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$, unless otherwise noted.)

Downconverter Curves

NOISE FIGURE vs. RF FREQUENCY

2LO-2RF RESPONSE vs. RF FREQUENCY

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

Typical Operating Characteristics (continued)
(MAX2043 Typical Application Circuit, C2 not installed, RFTAP $=\mathrm{GND}, \mathrm{VCC}=+5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{LOSEL}=$ " 0 " (LO2 selected), PRF $=$ $0 \mathrm{dBm}, \mathrm{fLO}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$, unless otherwise noted.)

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

Typical Operating Characteristics (continued)

(MAX2043 Typical Application Circuit, C2 not installed, RFTAP = GND, VCC $=+5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{LOSEL}=$ " 0 " (LO2 selected), PRF $=$ $0 d B m, f_{L O}>f_{R F}, f_{I F}=200 \mathrm{MHz}$, unless otherwise noted.)

Downconverter Curves

LO LEAKAGE AT IF PORT vs. LO FREQUENCY

LO SWITCH ISOLATION vs. LO FREQUENCY

LO LEAKAGE AT IF PORT vs. LO FREQUENCY

LO LEAKAGE AT RF PORT vs. LO FREQUENCY

LO SWITCH ISOLATION vs. LO FREQUENCY

LO LEAKAGE AT IF PORT vs. LO FREQUENCY

LO LEAKAGE AT RF PORT vs. LO FREQUENCY

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

Typical Operating Characteristics (continued)
(MAX2043 Typical Application Circuit, C2 not installed, RFTAP = GND, VCC $=+5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{LOSEL}=$ " 0 " (LO2 selected), PRF $=$ $0 \mathrm{dBm}, \mathrm{fLO}_{\mathrm{LO}}>\mathrm{f}_{\mathrm{RF}}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$, unless otherwise noted.)

Downconverter Curves

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

Typical Operating Characteristics
(MAX2043 Typical Application Circuit, C2 $=22 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{LOSEL}=$ " 1 " (LO1 selected), $\mathrm{P}_{\mathrm{IF}}=0 \mathrm{dBm}, \mathrm{fRF}=\mathrm{fLO}-\mathrm{f} \mathrm{IF}$, $\mathrm{f}_{\mathrm{IF}}=90 \mathrm{MHz}$, unless otherwise noted.)

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

Typical Operating Characteristics (continued)
(MAX2043 Typical Application Circuit, C2 $=22 \mathrm{pF}, \mathrm{V} \mathrm{CC}=+5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{LOSEL}=$ "1" (LO1 selected), $\mathrm{P}_{\mathrm{IF}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=\mathrm{f}_{\mathrm{fO}}-\mathrm{f}_{\mathrm{IF}}$, $\mathrm{f}_{\mathrm{IF}}=90 \mathrm{MHz}$, unless otherwise noted.)

Upconverter Curves

LO-2IF REJECTION vs. RF FREQUENCY

LO-3IF REJECTION vs. RF FREQUENCY

LO-2IF REJECTION vs. RF FREQUENCY

LO + 3IF REJECTION vs. RF FREQUENCY

LO-3IF REJECTION vs. RF FREQUENCY

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

Typical Operating Characteristics (continued)
(MAX2043 Typical Application Circuit, C2 $=22 \mathrm{pF}, \mathrm{V} \mathrm{CC}=+5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{LOSEL}=" 1 "\left(\mathrm{LO} 1\right.$ selected), $\mathrm{P}_{\mathrm{IF}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=\mathrm{f}_{\mathrm{LO}}-\mathrm{f}_{\mathrm{IF}}$, $\mathrm{f}_{\mathrm{IF}}=90 \mathrm{MHz}$, unless otherwise noted.)

Upconverter Curves

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

Pin Description

PIN	NAME	
$1-5,7,10$, $11,12,15$, $18,20,22$, $24,25,26$, 28,29, $31-36$	GND	FUNCTION
$6,16,21,30$	VCC	These pins have no internal connection and can be left open or connected to ground. It is suggested that these pins be grounded back to the exposed paddle where possible to improve pin- to-pin isolation.
8	RFTAP	Cower-Supply Connection. Connected to external power supply (5V). Bypass to GND with a 0.01
capacitor as close to the pin as possible.		

Detailed Description

The MAX2043 can operate as either a downconverter or an upconverter mixer that provides 7.5 dB of conversion loss with a typical 7.8 dB noise figure. IIP3 is +31 dBm for both upconversion and downconversion. The integrated baluns and matching circuitry allow for 50Ω single-ended interfaces to the RF port and two LO ports. The RF port can be used as an input for downconversion or an output for upconversion. A singlepole, double-throw (SPDT) switch provides 50ns switching time between the two LO inputs with 43 dB of LO-to-LO isolation and -52dBm of LO leakage. Furthermore, the integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX2043's inputs to a -3 dBm to +6 dBm range. The IF port incorporates a differential output for downconversion, which is ideal for providing enhanced IIP2 performance. For upconversion, the IF port is a differential input.
Specifications are guaranteed over broad frequency ranges to allow for use in UMTS/WCDMA and 2G/2.5G/3G DCS 1800, PCS 1900, cdma2000, and WiMAX base stations. The MAX2043 is specified to operate over a 1700 MHz to 3000 MHz RF input range, a 1900 MHz to 3000 MHz LO range, and an IF range of near 0 MHz to 350 MHz . The external IF component sets the lower frequency range.

RF Port and Balun

For using the MAX2043 as a downconverter, the RF input is internally matched to 50Ω, requiring no external matching components. A DC-blocking capacitor is required because the input is internally DC shorted to ground through the on-chip balun. The RF return loss is typically 15 dB over the entire 1700 MHz to 3000 MHz RF frequency range. For upconverter operation, the RF port is a single-ended output similarly matched to 50Ω.
An optional L-C BPF can be installed at the RF port to improve some upconverter performance.

LO Inputs, Buffer, and Balun The MAX2043 is optimized for a 1900 MHz to 3000 MHz LO range. As an added feature, the MAX2043 includes an internal LO SPDT switch that can be used for fre-quency-hopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically less than 50ns, which is more than adequate for typical GSM applications. If frequency-hopping is not employed, simply set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL): logichigh selects LO1, logic-low selects LO2. LO1 and LO2 inputs are internally matched to 50Ω, requiring only a 22 pF DC-blocking capacitor. To avoid damage to the

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

part, voltage MUST be applied to VCC before digital logic is applied to LOSEL.
A two-stage internal LO buffer allows a wide input power range for the LO drive. All guaranteed specifications are for an LO signal power from -3 dBm to +6 dBm . The on-chip low-loss balun along with an LO buffer drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.

High-Linearity Mixer

The core of the MAX2043 is a double-balanced, high-performance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer.

Differential IF

The MAX2043 mixer has a DC to 350MHz IF frequency range where the low-end frequency depends on the frequency response of the external IF components. Note that these differential ports are ideal for providing enhanced IIP2 performance. Single-ended IF applications require a $1: 1$ balun to transform the 50Ω differential IF impedance to 50Ω single-ended system. After the balun, the IF return loss is better than 20dB. The user can use a differential IF amplifier on the mixer IF ports, but a DC block is required on both IF+ and IF-ports to keep external DC from entering the IF ports of the mixer. The mixer requires a DC ground return on either the RF tap pin (short tap to ground) or on each IF differential port ($1 \mathrm{k} \Omega$ resistor or an inductor from each IF differential pin to ground).

Applications Information

Input and Output Matching
The RF and LO inputs are internally matched to 50Ω. No matching components are required. Return loss at the RF port is typically 17 dB and return loss at the LO ports are typically 14 dB . RF and LO inputs require only DC-blocking capacitors for interfacing.
The IF output impedance is 50Ω (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun transforms this impedance to a 50Ω single-ended output (see the Typical Application Circuit).

Abstract

Bias Resistor Bias current for the on-chip LO buffer is optimized by fine-tuning the off-chip resistor on pin 17 (R1). The current in the buffer amplifier can be reduced by raising the value of this resistor but performance (especially IP3) degrades. Doubling the value of this resistor reduces the current in the device by approximately half.

Additional Tuning Components

The MAX2043 mixer performance can be further enhanced with the use of external components. The values of these components depend on the application and the frequency band of interest. Consult the factory for further details.

Layout Considerations

A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PC board exposed pad MUST be connected to the ground plane of the PC board. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PC board. The MAX2043 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.

Power-Supply Bypassing Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each Vcc pin and TAP with the capacitors shown in the Typical Application Circuit. See Table 1. Place the TAP bypass capacitor to ground within 100 mils of the TAP pin.

Exposed Pad RF/Thermal Considerations

 The exposed paddle (EP) of the MAX2043's 36-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PC board on which the MAX2043 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PC board, either directly or through an array of plated via holes.
1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

Table 1. Component List Referring to the Typical Application Circuit

COMPONENT	VALUE	DESCRIPTION
C1	4 pF	Microwave capacitor (0402)
C2 $^{*}, \mathrm{C} 4, \mathrm{C} 6, \mathrm{C} 8$	22 pF	Microwave capacitors (0402)
C3	Not used	Microwave capacitor (0603)
$\mathrm{C} 5, \mathrm{C} 7, \mathrm{C} 9$	$0.01 \mu \mathrm{~F}$	Microwave capacitors (0402)
R1	360Ω	$360 \Omega \pm 1 \%$ resistor (0402)
T1	$1: 1$	Transformer (50:50) M/A-COM MABAES0029
U1	MAX2043	Maxim IC

*Ground pin 8 for downconverter operation.

Chip Information
PROCESS: SiGe BiCMOS

Pin Configuration

TOP VIEW

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

1700MHz to 3000MHz High-Linearity, Low LO Leakage Base-Station Rx/Tx Mixer

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS									
PKG.	36L 6x6			40 L 6x6			48L 6x6		
SYMEOL	MIN.	NOM.	MAX.	MIN.	NOM.	max.	MIN.	NOM.	MAX.
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
AI	0	0.02	0.05	0	0.02	0.05	0	-	0.05
A2	0.20 REF.			0.20 REF .			0.20 REF .		
b	0.20	0.25	0.30	0.20	0.25	0.30	0.15	0.20	0.25
D	5.90	6.00	6.10	5.90	6.00	6.10	5.90	6.00	6.10
E	5.90	6.00	6.10	5.90	6.00	6.10	5.90	8.00	8.10
e	0.50 BSC .			0.50 BSC .			0.40 BSC.		
k	0.25	-	-	0.25	-	-	0.25	0.35	0.45
L	0.45	0.55	0.65	0.30	0.40	0.50	0.40	0.50	0.60
L1	-	-	-	-	-	-	0.30	0.40	0.50
N	36			40			48		
ND	9			10			12		
NE	9			10			12		
JEDEC	WUJD-1			WUJD-2			-		

EXPOSED PAD Variations							DOWN BONDS ALOWED
PKG.	02			E2			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
T3666-2	3.60	3.70	3.80	3.60	3.70	3.80	YeS
T3666-3	3.60	3.70	3.80	3.60	3.70	3.80	NO
T3666N-1	3.60	3.70	3.80	3.60	3.70	3.80	NO
T4066-2	4.00	4.10	4.20	4.00	4.10	4.20	YES
T4066-3	4.00	4.10	4.20	4.00	4.10	4.20	YES
T4066-4	4.00	4.10	4.20	4.00	4.10	4.20	NO
T4066-5	4.00	4.10	4.20	4.00	4.10	4.20	NO
T4866-1	4.20	4.30	4.40	4.20	4.30	4.40	YES

NOTES:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1

SPP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR 0.4 mm LEAD PITCH PACKAGE T4866-1.
10. WARPAGE SHALL NOT EXCEED 0.10 mm .

1. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

